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LETTER TO THE EDITOR 

Fractal dimensionality and the number of visited sites of 
the ant in the labyrinth 

R B Pandey and D Stauffer 
Institute of Theoretical Physics, Cologne University, 5000 Koln 41, West Germany 

Received 6 July 1983 

Abstract. Monte Carlo studies in three dimensions confirm the hypothesis of Toulouse 
and Rammal that the number of distinct sites visited by a random walk on a random 
network at its percolation threshold varies as ( t i ~ n e ) ~ ’ ~ .  

The largest cluster at the percolation threshold is recognised to be a fractal because 
of its self-similar nature (Mandelbrot 1983). Numerous studies of random walks on 
these structures have been made recently; see Kehr and Binder (1983) and Mitescu 
and Roussenq (1983) for reviews, The critical exponent of the random walk is related 
to the critical exponent p (often also denoted as t )  of the conductivity of random 
resistor networks. Alexander and Orbach (1982) related p to other critical exponents 
of percolation theory by asserting for the average end-to-end distance r after very 
long times r :  

r t2’3D. (1) 
Here D = d/( 1 + 1/S) is the fractal dimension of the largest cluster at the &dimensional 
percolation threshold. Rammal and Toulouse (1983) made an additional assumption 
leading to 

~ ( t )  a t 2’3 (2) 
where S is the number of distinct sites visited by the random walk in t steps. Monte 
Carlo simulations confirmed this exponent 3 (which can be called half the spectral 
dimensionality) reasonably well in two dimensions (Angles d’Auriac er a1 1983) and 
on the Bethe lattice (Angles d’Auriac and Rammal 1983). For other diffusion prob- 
lems, some deviations from scaling theory were reported by Mitescu and Roussenq 
(1983) in three dimensions; these deviations seem to be due to the short times t 
employed there, since Pandey and Stauffer (1983) found agreement between Monte 
Carlo simulations and scaling theory for t - lo6. The confirmations of scaling theory 
for S ( t )  are based on shorter time r - lo4 (Angles d’Auriac et a1 1983, Angles d’Auriac 
and Rammal 1983). Thus the present work checks on the simple cubic lattice, whether 
Monte Carlo data for long times agree with the scaling theory for S ( t ) ,  or whether 
earlier agreement was based on a cancellation of theoretical errors and systematic 
simulation errors. 

We start our diffusion process for the ‘ant in the labyrinth’ at an arbitrary occupied 
site of the lattice with occupation probability p = 0.31 17 = p c .  Thus we have to average 
over both finite clusters and the ‘incipient’ infinite network. This averaging (Stauffer 
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1979) gives a slightly modified exponent (Angles d'Auriac and Rammal 1983): 

(3) 

Our lattice size was 1503 and smaller; we stored in single bits whether a site is occupied 
or empty, and whether it was visited before or not. A CDC Cyber 76 computer needed 
about 3.6 ps for each step on average. (For small lattices single-bit handling could 
be avoided, reducing the time to about 2 ps. We are trying to simulate the problem 
also on a Cyber 205 vector computer where 0.4 ps can be reached if only r,  and not 
S, is measured.) 

Figure 1 shows the Monte Carlo results. In spite of the long times used and the 
variation of lattice size we found no systematic change of our critical exponent for 
S ( t )  with time or system size, in contrast to the case of end-to-end distances (Pandey 
and Stauffer 1983). We find from this preliminary analysis 

(4) 
in good agreement with the theoretical exponent 0.54 f 0.01 from equation (3). Thus 
the Rammal-Toulouse theory seems confirmed. 

This result is also a rather direct confirmation of the Alexander-Orbach rule of 
equation (1). Whereas Rammal and Toulouse (1983) needed an additional assumption 
to relate equations (1) and (2), we now relate them more directly by scaling arguments. 
(RRammal informed us that he has a different derivation of the links between 
equations (1) and (2).) Dynamical scaling (Gefen et a1 1983) suggests near p c  for 
large walks on large clusters containing s sites each: 

( 5 )  

s ( ~ ) ~  t ( Z / 3 ) ( l - l / - 5 )  

qt) oc t0.54+0.02 

S ( t )  = m s y ,  ( P  - P c ) S " )  
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Figure 1. Number, S, of distinct visited sites plotted against time t (number of step 
attempts in a walk). The different symbols denote data taken from different samples. A, 
sample size L 3  = 150 x 150 X 150, number of different random walks (starting points for 
the ants) N = 100 each on NRUN = 50 independent lattice realisations at the percolation 
threshold p c =  0.3117 for times up to lo5; 0, L = 90, N = 5, NRUN= 10, t s lo6; V, 
L = I S O ,  N = I O , N R U N = ~ S , ~ S ;  10'. 
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where U = l /pS, x is the exponent we want to determine, and y can be derived to be 
y = -z /D = - [ 2 + ( p  -p)/v]/D (Gefen et a1 1983). Times scale as (length)* and 
lengths scale as s l ID.  At the critical point p = p c  we may rewrite equation ( 5 )  as 

s(r) = tXg( r /sL 'D) .  (6 )  
For r + 00 we know that each site of the finite cluster will be visited: 

S(t = 00)=s. (7) 
Equations (6) and (7) together require the scaling function g to vanish for large 
arguments as (t /s' 'D)-x,  with x = D/z. Equation (1) means z = 3D/2, and thus we 
rederived x = 5. In this sense, our Monte Carlo data are a numerical confirmation of 
the Alexander-Orbach rule for cc. and give a surprisingly accurate p / u  = 2.2 f 0.2 with 
little computational effort, in agreement with other recent work (Mitescu and Greene 
1983, Derrida et a1 1983, Pandey and Stauffer 1983, see also Sahimi er a1 1983). 

In summary, our results are in full accord with our present understanding of kinetic 
percolation. 

We thank G Toulouse for suggesting this work, R Rammal for informing us about his 
work, and J G Zabolitzky for advice on vector computers. This work was partially 
supported by SFB 125. 
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